

Mixtasy: Remailing on Existing Infrastructure

MASTERSTUDIUM:

> IT-SECURITY

Anonymized Email Communication Easily Deployable Using SMTP & OpenPGP

Master's thesis presentation @Young Researchers' Day 2016 St Johann im Pongau (11.10.2016)

by Johannes Burk

1st Reviewer:
Dipl.-Inform. David Stezenbach
2nd Reviewer:
Priv.-Doz. Mag. DI. DI. Dr.techn. Karl Michael Göschka

Introduction

- Secure messaging is a big research area
- Plain email did not provide any security or privacy feature
 - But it's still heavily used
- TLS and openPGP, S/MIME isn't enough
 - Metadata still readable
- Eavesdroppers/Adversaries are everywhere (attention tinfoil hat carriers!)

Objective

- Build a secure and privacy preserving asynchronous messaging prototype solution
- ... With good adoption properties (design on top of existing infrastructure)

Main Parts of the work

- Requirement Definition
- Technologies & Existing Work
- Design Considerations
- Protocol Specification (wire protocol)
- Protocol Implementation (tool, prototype)

Requirements: Security and Privacy

Security

- Confidentiality, integrity and authenticity
 - \circ end-to-end
- Anonymity Preserving
 - conversation security feature must not break transport privacy

Privacy

- Participation Anonymity & Global Adversary Resistance
- Unlinkability
- Sender Anonymity

Requirements: Usability and Adoption

Usability

- Keep Email Properties
 - asynchronicity
 - message drops/delays
- Easy Initialization

Adoption

- Compatibility to existing Infrastructure
- No Additional Service
- Scalable

Existing Work: Remailer

- Based on mix networks
- Different types (evolution caused)
 - Type 0: Pseudonymous/Nym remailer
 - Just for pseudonymization
 - Type 1: Cypherpunk
 - Encryption not mandatory
 - Type 2: Mixmaster
 - Outdated crypto (RSA-1024, (3DES), MD5, …)
 - Type 3: Mixminion
 - Doesn't support SMTP

Mixmaster Remailer

The Idea of Mixtasy

- Secure and anonymous emailing
- Reuse existing technologies and infrastructure!

Overview

- Mix Network design
- Data Format: Internet Message Format [RFC-5322]
- Encryption: openPGP [RFC-4880]
- Transport: SMTP [RFC-5321]
- Directory Service: openPGP Key Servers (no additional service!)
- Implementation: Postfix Filter Addon (adoption!) + client to send mails

INVERSITY OF AFFEILD SCIENCES

Design Considerations I

- Encryption: confidentiality & prevent tracking by content
 - layered encryption between sender and mixes/receiver
- Mixing Algorithm: blur the trace of a message (anonymity)
 - Timed dynamic-pool mix
- Message Size: prevent tracking by size (anonymity)
 - Uniformed; repadding at each mix

Design Considerations II

- Replay Attack prevention (anonymity)
 - Cache message hashes
- Tagging attack prevention (anonymity)
 - Message data verification
- Dummy Traffic: complicate blending attacks & reduce message delays
 - inject dummy messages
- Abuse & Spam protection
 - cost based spam protection

Mixtasy Design: Receiver's Provider supports Mixtasy

MASTERSTUDIUM:

> IT-SECURITY

Message Format

- Original Message
 - As composed by the sender
- Final Mix Message
 - Wraps an original message
- Intermediate Mix Message
 - Contains another intermediate or a final mix message

OpenPGP Message Format Example

Public-Key Encrypted Session Key Packet (Tag 1)			
Sym. Encrypted Data + MDC Packet (Tag 18)			
Compressed Data Packet (Tag 8)			
Literal Data Packet (Tag 11)			
Payload			

> TECHNIK

UNIVERSITY OF APPLIED SCIENCES

	Intermediate Mix Message Header	
	verification header field to verify next 20 kbytes	
	additional header fields	
ſ	OpenPGP PK Enc Session Key (Tag 1)	
	OpenPGP Sym Enc Data (Tag 9) *	
	OpenPGP Literal Data (Tag 11) *	
	Final Mix Message Header	
	verification header field to verify next 20 kbytes	
	additional header fields)
{	OpenPGP Literal Data (Tag 11)	
	Original Message	fixed size 20 kbyte
	inner padding	J
l	outer padding	

MASTERSTUDIUM: > IT-SECURITY

fixed size 30 kbyte

Decryption and re-padding

Keys

- Long-term OpenPGP key (trust establishment)
- Short-term sub-keys (encryption)
- Distribution over public PGP key server
- Discovery via search for "mixtasy@"

Prototype

- Written in Python, makes use of GnuPG
- CLI Client to create mails

 Including: Mix discovery and key retrieval, Path selection, constructing single part messages, sending via SMTP

MASTERSTUDIUM:

> IT-SECURITY

- Postfix Filter to operate a mix node
 - Including: Strip of encryption layer, Verification check,
 Re-padding to fixed message size
- Not implemented yet:
 - multi part and dummy messages, mixing algorithm, replay attack prevention

Conclusion

- Remailer protocol design and prototype created
 - Mostly specified by composing existing technologies
 - Deployable by upgrading existing MTAs
 - Receiver just needs OpenPGP software
- Future work
 - Implement full specification
 - Detailed evaluation/auditing
 - Research on dynamically change timed dynamic-pool mix parameters
 - Extend the protocol by an anonymous reply feature

Download Slides and Master's Thesis, Try out or Contribute

- <u>http://mixtasy.net/</u>
- <u>https://github.com/jojoob/mixtasy/</u>